
130 Informatica Economică vol. 15, no. 2/2011

Reconfigurability Function Deployment in Software Development

Stelian BRAD, Adrian CHIOREANU, Mircea FULEA, Bogdan MOCAN, Emilia BRAD
Technical University of Cluj-Napoca, Romania

stelian.brad@staff.utcluj.ro, adrian.chioreanu@com.utcluj.ro
mircea.fulea@staff.utcluj.ro, bogdan.mocan@muri.utcluj.ro, emilia.brad@muri.utcluj.ro

In the forthcoming highly dynamic and complex business environment high-speed and cost-
effective development of software applications for targeting a precise, unique and momentary
set of requirements (no more-no less) associated to a customized business case will bring sig-
nificant benefits both for producers and users. This requires a life cycle change-oriented ap-
proach in software development. In this respect, designing software with intrinsic evolution-
ary resources for reconfiguration represents the sound approach. A methodology for concur-
rent deployment of reconfigurability characteristics in software applications is introduced in
this paper. Its potential is exemplified in a case study dealing with web-based software tools
to support systematic product innovation projects.
Keywords: Reconfigurability, Software Development, Innovation, TRIZ, RAD

Introduction
Software development methodologies

date back from the 1960s and provide a
frame for structuring, planning and con-
trolling the actual software development
process [1]; in other words, they support the
entire life cycle of a software product, de-
scribing what is to be performed in each
stage of the development process [2] [3].
Software development methodologies are
chosen at the be-ginning of a project. When
deciding upon a specific methodology, the
development team should consider the com-
plexity of requirements, particularities of the
design and coding team, complexity of the
overall project, and how the software product
should evolve.
As businesses and technologies changed, de-
velopment teams should face not only com-
plex software requirements, but dynamic
ones. Scenarios might arise when require-
ments can't be even completely known when
the actual coding phase starts. Factors which
have increased the complexity of require-
ments arise from intensified global competi-
tion, reduction in lead-time and life expec-
tancy of products, diversification of demand,
and new technologies [4].
A popular software development methodol-
ogy able to face such challenges is the agile
concept, which deals with irregular and un-
predictable requirements [5] [6]. It emerged

from concepts as Rapid Application Devel-
opment (RAD), prototyping and evolutionary
(e.g. spiral) life-cycle models [7]. The basic
goal of the agile software development is to
combine the life-cycle approaches mentioned
above with adaptive and collaborative team
work practices in order to obtain short design
cycles, which would finally reflect the re-
quirement dynamics.
However, all existing methodologies (includ-
ing agile) rely on the idea that requirements
are eventually determined at the time the
product reaches its beta or release-candidate
stage. To deal with ambiguous requirements,
different approaches must be taken into ac-
count.

2 The problem
According to some visionary analyses, the
increasing dynamics of business environment
will have significant implications on software
development approaches, too [8]. In this re-
spect, the static software engineering ap-
proach “plan-design-develop” will be re-
placed by the dynamic approach “anticipate-
predict-learn” [9]. Among other issues, a key
focus will be also on postponing the major
decisions from the design-phase (as usually it
is done in the traditional software life cycle)
at the run-time phase [8]. Software system
evolvability, incorporation of domain knowl-

1

Informatica Economică vol. 15, no. 2/2011 131

edge in all phases of the software product-
service life cycle is one of the trends [8].
Beyond this, countless opinions highlight
that too much resources (e.g. intelligence,
money, etc.) are spending today in develop-
ing software-service solutions that are more
or less redundant (e.g. a significant amount
of public funds – including national and
European research and socio-economic sup-
porting programs - has been spent on devel-
oping similar solutions). Moreover, criticism
is directed on the fact that majority of these
software-service solutions incorporate too
many features and functional units than nec-
essary at a certain moment for the user. Here,
a more reliable approach is having the capa-
bility of configuring a customized software-
service solution to the specific current need
of the user by integrating in a fast and cost-
effective way existent software-service units
(modules) from the market (if they already
exist), as well as by effective-reconfiguring
the solution when the need is changed. This
means, the user will pay only for what he/she
really needs and uses now; no more, no less.
To these, one should see that in an ill de-
fined, turbulent and highly evolving business
environment it will be almost impossible to
have a complete definition of requirements in
the development phase; new and significant
requirements will be revealed later on, in the
run-time phase of the system. But any re-
quirement occurring in any stage of the run-
time phase will have to be solved in real time
and with affordable costs; in most of the
cases by instantaneous integration of already
available functionalities – doesn’t matter
which is the origin of the solution and what it
is behind. Altogether, these contexts claim
for a paradigm shift in conceptualizing, de-
fining and developing a software-service so-
lution over its life cycle. A reliable approach
in this respect deals with the development of
highly reconfigurable software-service sys-
tems.

3 About the reconfigurability paradigm
The development of reconfigurable software
is desirable from a variety of reasons, among
which adapting applications to changing en-

vironment, supporting on-line software up-
grades, extending base software system func-
tionality with additional services [10] -
nowadays the Internet being one of the major
driving forces towards building reconfigur-
able software [8] [11]. Any software that is
developed as a reconfigurable system is in-
herently reusable.
When talking about software reconfigurabil-
ity, the building blocks are the autonomous
modules and interfaces. Conceptually, mod-
ules represent a separation of concerns, en-
forcing logical boundaries between compo-
nents, such that none or few modules depend
upon other modules of the system. In a re-
configurable design approach, to have as few
dependencies as possible is a major impor-
tance issue. Modules are typically incorpo-
rated into a program through interfaces. A
module interface expresses those elements
that are provided and required by the module.

Fig. 1. Characteristics of reconfigurable

software systems

Another key aspect is that when creating a
design based on separate modules, instead of
creating a monolithic application where there
is no logical separation between components,
all being gathered in a single but extended
piece of code, one creates several smaller
modules which, when composed together,
will create the whole system. This makes
modularized designed systems, if conceived
right and developed accordingly, far more
flexible than traditionally monolithic design
since all or many of these modules may be
reshaped and reused depending on the chang-
ing environment.

132 Informatica Economică vol. 15, no. 2/2011

Reconfigurability goes beyond modulariza-
tion. The main characteristics that set apart a
reconfigurable software system from other
software systems are: flexible customization,
convertibility, scalability, modularity, inte-
grability, diagnosability (see Figure 1).
Flexible customization: The modules are de-
signed with application-oriented require-
ments to ensure precise level of flexibility for
being able to support a "family of roadmaps”
(family of task-packages). For a software
system, flexible customization ensures wide
cost savings over the life cycle. Flexible cus-
tomization makes each dominant feature of a
certain family of roadmaps determining sys-
tem’s configuration.
Convertibility: Changing from one roadmap
to another one has to be done quickly. This
feature is called convertibility and must be
provided at module and system level. Quick
conversion must be done either automatically
or manually. Through the conversion proc-
ess, modifications may occur in the structure
of the modules as well as in the structure of
the system, functionality may change, and a
rapid calibration of the system may take
place. Conversion is also used to add new
modules to the system, that may affect or not
its overall functionality and structure.
Scalability: Scalability is the counterpart of
convertibility, which comes in and deals with
system fine-tuning in small steps for increas-
ing productivity (from the user’s point of
view). Fast and easy addition of system
modules or additional functionality to exist-
ing modules characterizes this process. Ex-
pandability is also part of scalability: existing
hardware can be upgraded or new hardware
or software can be added to the system with-
out reprogramming the software application.
Modularity: All major components of the
software system are modular. Modular com-
ponents can be easily replaced, maintained,
improved, and updated. A module (and hence
the technology implemented within that
module) can easily be transferred to other us-
ers, or target groups, which are also using
that framework, thus enabling an easy tech-
nology transfer. Modules should incorporate
specific properties that make them ideal can-

didates for system reconfiguration, such as:
code-related descriptions, description of the
information passing through their interfaces,
intrinsic flexibility, etc. Modules are recon-
figurable only if their design and implemen-
tation is both independent of the target appli-
cation and independent of the target hard-
ware configuration.
Integrability: Clear rules of configuration and
integration must be set up. Modules must be
designed to be easily integrated into other
systems.
Diagnosability: This characteristic includes
two important aspects: detecting non-
conformities and defects in the system and
identification of causes for poor quality in
operation. The design of diagnose-enabled
software systems requires integration within
modules and interfaces of systematic moni-
toring methods, as well as intelligent agents
(for rapid and timely identification of errors).
It should be also noted that reconfigurability
is in direct conflict with deploy-ability [12].
Both are needed, thus the challenge is to de-
sign a reconfigurable software system that is
at the same time easily and timely deploy-
able.

4 Methodology
For handling and implementing reconfigura-
bility as a key performance characteristic of a
software-service solution, a methodology for
planning and deploying the reconfigurability
function is further proposed. It consists of the
following steps:
Step 1: Rank the constitutive dimensions of
reconfiguration (modularity, convertibility,
flexible customization, scalability, diag-
nosability, system integrability) using the
AHP method and consistency analysis [13].
Step 2: Formulate key requirements in rela-
tion to each dimension of reconfiguration and
rank them using AHP and consistency analy-
sis.
Step 3: Determine key metrics for each di-
mension of reconfiguration.
Step 4: Determine the local value weight of
each key metric by deploying local key re-
quirements into local key metrics. Use a
QFD-type philosophy in this respect [13].

Informatica Economică vol. 15, no. 2/2011 133

Step 5: Determine the global value weight of
each key metric by aggregating information
from step 1 and step 4. Aggregation is done
by multiplying the local value weight of each
key metric with its parent's weight and the ar-
ray obtained in this way is afterwards nor-
malized.
Step 6: Use information from step 5 to select
those metrics which play the most significant
role in the equation of system reconfigura-
tion.
Step 7: Identify the correlations between the
metrics belonging to the subset selected at
step 6. Extract all pairs of metrics that are
negative correlated.
Step 8: Formulate inventive vectors of inno-
vation for all pairs of conflicting problems
identified at step 7. Use TRIZ method to
solve this issue [13].

Step 9: Use information from step 8 to for-
mulate generic guidelines to be followed dur-
ing conceptualization, design and coding of
software systems (including architecture,
flows, processes, information, etc.) in order
to build them for effective and efficient re-
configuration.

5 Guidelines on software development
from the methodology application
The first step in the methodology described
above requires ranking the constitutive di-
mensions of reconfigurability. In this respect,
the common agreed perspective is that con-
vertibility, integrability and scalability are
the driving characteristics of reconfigurabil-
ity, having the same impact in this equation.
The AHP application leads to the results il-
lustrated in Figure 2.

Fig. 2. AHP for ranking the objective-functions of reconfiguration

For consistency analysis of the results, an in-
dex IR depending on the number n of com-
pared elements and the maximum eigen-
value λmax of the system det[An×n – λ⋅In] = 0
is calculated (IR = |(λmax – n)/(n – 1)|) [13].
The pair-comparison is consistent if IR≤ 0.1.
For the case in Figure 2, λmax = 6.05, n = 6,
thus IR = 0.1 (analysis is consistent).
The key requirements and their local impor-
tance for each objective-function, as they
came up from the second step of the method-
ology are further introduced.
Modularity: high variety of tools developed
in independent libraries (31.9%); as many as
feasible interface between modules defined
outside the modules (46%); multimodal inter-
faces (22.1%).
Convertibility: use of various roadmaps (ap-
plication flows) (46.3%); rapid switch be-

tween different roadmaps (29.2%); rapid re-
calibration (bringing to nominal perform-
ance) (24.5%).
Integrability: documented code (32%); com-
patibility with different software technolo-
gies (18.5%); easy to integrate (low expertise
required for integrator) (29.7%); rapid inte-
gration (19.8%).
Flexible customization: low cost over life cy-
cle (28.6%); requirement-oriented flexibility
(28.6%); cover dominant characteristics of
roadmap’s families (42.9%).
Scalability: rapid adjustments for new
(change in) functionalities (46%); small scal-
ing increment (22.1%); inexpensive adjust-
ments (31.9%).
Diagnosability: presence of error handler
(30%); error prevention (20%); comprehen-

134 Informatica Economică vol. 15, no. 2/2011

sive monitoring (20%); testing of input data
for validity (30%).
A set of 28 metrics have been identified dur-
ing the step 3 of the methodology, distributed
as follow: modularity: 4; convertibility: 3; in-
tegrability: 5; flexible customization: 4; scal-

ability: 5; and diagnosability: 7. Figure 3 il-
lustrates the weighting process of the metrics
related to flexible customization. A similar
process is performed to weight the key met-
rics for the other five objective-functions.

Fig. 3. Weighting the key metrics that characterize flexible customization

The global weights of the 28 metrics come
up by weighting local results with the ranks
of objective-functions. Because of the limited
space in the paper, some of the most impact-
ing metrics and their global weights are fur-
ther introduced for exemplification: (a) in re-
lation with convertibility: no. of different
roadmaps (10.6%); time/switch (8.4%); (b) in
relation with scalability: time for adjustments
(inexpensive adjustments) (7.2%); adjust-
ment time/new functionality (5.6%); (c) in
relation with integrability: expertise level:
novice(1-2) senior(3-4) expert(5) (5.2%); %
of documented classes (4.8%); time for inte-
gration (4.2%); % of documented functions
(4.1%); (d) in relation with flexible customi-
zation: % of dominant characteristics that are
covered (4.9%); average % of unused func-
tionalities / configuration (3.0%); (e) in rela-
tion with modularity: no of different tech-
nologies for interface (4.3%); % of interface
defined outside the module (3.9%); granular-
ity level (no. functions/tool) (3.0%); no. dif-
ferent tools/library (2.9%).
This set of 14 metrics above presented repre-
sents the set of most impacting metrics in re-

lation with reconfigurability (the major met-
rics). The other 14 metrics (not presented
here because of the limited space of the pa-
per) have weights ranging from 1.3% to
2.7%, they bringing only about 28.2% impact
in the equation of reconfigurability. One
could identify this set of less impacting met-
rics includes all metrics belonging to diag-
nosability, three metrics of scalability, two
metrics of flexible customization, one metric
of integrability and one metric of scalability
from the initial set of 28 metrics.
The correlations between the most relevant
17 metrics, as they are established based on
their global weights, are summarized in Fig-
ure 4. In this set of correlations, 11 pairs of
negative correlated metrics are revealed.
They represent key challenges in developing
mature reconfigurable software solutions.
To approach innovatively these conflicts,
TRIZ method has been applied [13]. Accord-
ing to the TRIZ algorithm, the 11 pairs of
conflicting metrics are translated into pairs of
conflicting TRIZ parameters. Using the TRIZ
contradiction matrix, a list of generic inven-
tive vectors is determined. They represent

Informatica Economică vol. 15, no. 2/2011 135

“reference systems” in formulating innova-
tive solutions for the problem under consid-

eration.

Fig. 4. Correlations between the most relevant metrics

Thus, the following general recommenda-
tions to support effective and efficient recon-
figuration have been generated:
• Use a work breakdown structure for a

large project – the reconfigurable software
methodology might be based on RAD or
prototyping model,

• In the design stage, separate the part of the
application dealing with multiple

interfaces from the logic part of the
system, e.g. use a three layer (tyre)
architecture,

• In the analysis stage, each tool to be
provided or every function that builds up a
specific logical module should be planned
as versatile as possible, but the designer
might want to consider also the overall
versatility of its parent tool or of the entire

136 Informatica Economică vol. 15, no. 2/2011

system when designing a specific function
or tool,

• When designing the software, similar
functions should be merged together in
one or more versatile functions. Similarity
might not be obvious at all, that's why
emphasis should be directed towards
analysis stages. People with abstraction
and strong communication abilities should
be included in the analysis team,

• Build requirements also against the
possible future customer demands.
Although this is a difficult task, a good
practice is to know your user as well as
possible before the analysis stages start,

• Build specific functions in such a way that
their input data is computed before you
call these functions. Keep a good balance
between such computations and redundant
data,

• Build interfaces or communication rules
between physical modules or libraries to
be as technology-independent as possible.
Stick to open source technologies if
possible, as they provide higher
portability,

• Use a plug-in approach, but don't make
plug-ins technology-dependent. For
example, don't build them to rely on a
specific operating system. Move
technology-dependent functions into a
separate module for which you might
provide separate versions for each
platform,

• Provide skins and/or templates also for the
user interface,

• If it's feasible, create an open architecture
system, give access to source code,

• Build advanced settings panels, as these
might solve specific reconfigurability
issues. Use presets when possible. Also
allow each user to store the settings in his/
her profile, so that each user might
customize the application as he or she
wants,

• Use a presentation layer in order to reduce
interface code intervention when adding
new business functionality with the users
or vice versa. Also use the presentation
layer to separate the logic of the system

from the devices (technologies) used to
interact with it.

These guidelines should be added to those
derived from the base development method-
ology chosen for the software.

6 Case study: web-based software plat-
form for product innovation
A. Project context
Since innovation was placed in the centre of
economic development theory, a lot of prod-
uct innovation models have been developed
(according to some opinions, up to 17). Some
of them are incremental models; some others
are top-down or bottom-up models [14].
However, beyond the theoretical models of
product innovation practice reveals a huge
variety of innovation roadmaps, depending
on local conditions [15]. Moreover, innova-
tion is a dynamic process [15]. Under such
circumstances, a web-based software plat-
form for supporting product innovation is an
excellent candidate for a development ap-
proach which considers reconfiguration a key
performance indicator. The authors’ experi-
ence in this direction is further revealed in
the next sections of the paper.
B. Project description
In this section, we will briefly introduce a
case study for a reconfigurable software ap-
plication (TECH IT EASY) that is imple-
menting a high diversity of conceptual mod-
els related to product innovation manage-
ment.
The main goal of TECH IT EASY is to
smartly assist users in (re)defining (innova-
tive) products and/or processes within their
companies, incorporating in the same time
intrinsic resources for fast and cost-effective
reconfiguration to specific application-related
needs (including integration of specialized
external modules: e.g. ontologies for web and
database search).
Even if TECH IT EASY is a supporting tool
for the innovation processes within a com-
pany, it does not automate in any way these
innovation processes. While it’s final version
will provide several roadmaps for innovation,
these will not be able to replace human ca-
pacity for creativity, but rather support it.

Informatica Economică vol. 15, no. 2/2011 137

The TECH IT EASY system contains three
groups of tools: modelling tools, search &
analysis tools, and knowledge base tools.
According to the reconfigurable software re-
quirements, each tool is developed as a sepa-
rate module which communicates with the
other modules by means of interfaces.
The software application is designed having
in mind two distinct types of actors: modera-
tors and analysts. The moderator will be able
to create a project and grant different permis-
sions to analysts for a certain project. In or-
der to cope with different business cultures,
thus different environments (which are the
playground of reconfigurable software sys-
tems), the moderator may act, according to
the company policy, as a project supervisor,
administrator, moderator, project owner or
facilitator.
An analyst is an expert involved in the inno-
vation process. In order to work on a project
or to see the project, the analyst needs to
have the permission from the moderator.
In order to adapt to different innovation pat-
terns or routines, but also to cope with possi-
ble novice innovators, the project is created
by the moderator as a roadmap-driven inno-
vation project. The roadmap is defined using
an innovation ontology.
A roadmap-driven methodology, in the
TECH-IT-EASY tool framework, consists of
specific activities that are based on several
systematic methods and techniques of inno-
vation management (e.g. this time, QFD,
TRIZ, Su-Field analysis, and Laws of Evolu-
tion modules are included in the system),
which might or might not be used within an
innovation project.
For each activity, the ontology defines the
specific tools that are to be used in order to
complete the activity/task. For a certain ac-
tivity the analyst may choose from an array
of tools, all of them described in the ontology
as being tools that support the completion of
that activity.
The ontology describes conditionality rela-
tions between activities. In this way the sys-
tem gives an overview to the user of what ac-
tivities were performed already, and what ac-

tivities may be carried out in the future based
on the past activities already completed.
One key issue, which calls for a reconfigur-
able approach in the TECH IT EASY tool, is
that in the near future new innovation tools
might be added (as distinct modules) and
new roadmaps might be used, by adding new
innovation roadmaps with the help of new
innovation ontologies.
Although this aspect was not initially re-
quested within project’s specifications, it
came up later on following the guideline stat-
ing that “requirements should be built against
the possible future customer demands”.
The roadmap-driven innovation project can
be tailored to point out (graphically and tex-
tually) the steps required by a certain innova-
tion methodology. After completing a certain
step, the next step in the methodology se-
quence will be pointed out as the next task to
be completed. The analyst may choose at any
time to leave the roadmap. This concept of-
fers a balance between the flexible (open)
and fixed innovation methodology ap-
proaches.
C. Reconfigurability issues for the TECH IT
EASY tool
Because in this project requirements were not
clear at the beginning of the analysis stage
and will probably remain “open to changes”
even at the end of the development stage, re-
configuration-oriented design of the TECH
IT EASY tool is highly desired. Therefore,
the planning process was based on the gen-
eral guidelines issued in section 5. This
means, a living prototype approach was con-
sidered for managing the life cycle of this
software tool.
Regarding technologies, Java, JSP, HTML
and MySQL were chosen, because they are
wide-spread, well-known and are suitable to
support reconfigurability paradigm. Having
in mind one of the general recommendation,
we used only open source technologies, e.g.
The Spring Framework was chosen because
it is a powerful open source application
framework for the Java platform [16]. Spring
offers a good ratio in terms of productivity
over the learning curve. These technologies
are also suitable to solve portability issues,

138 Informatica Economică vol. 15, no. 2/2011

thus their use enhances the reconfigurabili- tyof the TECH IT EASY application.

Fig. 5. The three tire application architecture of TECH IT EASY

As the general recommendation obtained
from TRIZ inventive vectors has indicated
the use of three-tier architecture, TECH IT
EASY was designed starting with this in
mind (see Figure 5). Also, following the
guidelines, we separated the presentation
layer from the business logic, one of the ad-
vantages being that the user interface may be
customized by applying templates.
Actually, the popular-technology choice,
Spring and MySQL, was made by evaluating
the innovative vector no. 3 from the TRIZ
conflict matrix [13], while trying to solve the
negative correlated metric-pair [“no of dif-
ferent technologies for modules” of modular-
ity vs. “expertise level” of scalability].
The core of the application is the Ontology
Application Manager. We conceived this

module having in mind the user of the TECH
IT EASY application system is not a trained
innovation annalist, and thus he needs guid-
ance in finding the right steps in the innova-
tion process. This module gives an overview
on the current status of the project, as well as
on which activities are next on the line, as
well as on which tools are to be used to com-
plete those activities. As said before the be-
haviour of module relies on the ontology that
describes the innovation process, ontology
that is stored in the Ontologies module from
the Persistence Layer. The innovation meth-
odology may be changed by changing the in-
novation ontology. The Ontology Applica-
tion Manager offers also a percentage ap-
proximation of the progress of the current in-
novation project.

Informatica Economică vol. 15, no. 2/2011 139

Fig. 6. The House of Quality tool as seen in the TECH IT EASY application

From a conceptual point of view, for each ac-
tivity, a tool (see Figure 6) or a set of tools
may be called from the Toolbox module.
From a programmer point of view the tool-
box is an interface that each tool has to im-
plement. We choose to use a toolbox in order
to offer a common interface for the Ontology
Application Manager when calling various
tools. In this way new tools may be added at
any time, the only condition is that they must
implement the Toolbox interface. In order to
add a new tool a developer has to create also
the corresponding module in the presentation
layer, in other words the user interface for
that particular tool.
In order to further increase the degree of re-
configurability, we turned the attention to the
information (knowledge) storage. To facili-
tate an open communication between any

technology that may be part of the Persis-
tence Layer architecture, and the various
modules present in the Business Layer, we
choose to develop two dedicated modules,
the Document Management System and the
Knowledge Management System.
The Document Management System is offer-
ing a consistent interface for each module
(e.g. Document Repository Browser) so that
they can access different Document Reposi-
tories technologies (e.g. Alfresco DMS).
The Knowledge Management System is re-
sponsible for creating a bridge between the
ontologies (e.g. Triple Store) and the mod-
ules that need to access the information
stored in them (e.g. Ontology Application
Manager).
As the technologies chosen are quite popular,
although the application will support a “mix”

140 Informatica Economică vol. 15, no. 2/2011

of technologies, future module developments
are more likely to employ the already-in-use
ones. Besides that, it's also much more easily
to get expertise on a popular wide spread
technology.
As a note, choosing well-known technologies
for developing a software application doesn’t
always mean they’re the best choice for at-
taining technical excellence or even for ob-
taining average performances. Actually,
when elaborating the vision document for the
TECH IT EASY tool, the technologies that
analysts first thought of were a mix of a web
server with a desktop client (using FreePas-
cal or Delphi). But as the in-deep analysis re-
vealed, the aim is obtaining only a reasonable
level of performance while solving the nega-
tive correlated metric-pair above.
In this framework, requirements are perma-
nently assessed and enhanced by a planning
team consisting of the technical management,
developers, researchers on innovation meth-
odologies, researchers on ontology-based
searches, and users.
As innovation methodologies are to be applied
by a team, emphasis was also placed on com-
munication issues among users that collabo-
rate in a specific innovation project. Although
this was not a requirement, future communi-

cation aspects that would possibly emerge af-
ter users will start working with the applica-
tion were assessed.
The source code for all classes can be made
available, allowing customers or potential
users to fine-tune the application if they con-
sider so.

7 Conclusions and further researches
Using the proposed methodology we success-
fully managed the innovative design process
of the TECH IT EASY tool. Its innovative-
ness resides in supporting a variety of flexi-
ble application-related methodologies, even
those for which new tools will be developed
in the near future.
A good understanding of requirements, supe-
rior communication in the planning team,
combined with the “know-your-user” ap-
proach in mind and with visual class librar-
ies, APIs, dynamic link libraries and a good
IDE might be a feasible counterpart to recon-
figurability issue in software development.

Acknowledgements
Financial support from the European Com-
mission within the FP7 research project
TECH IT EASY/232410 is acknowledged
with gratitude.

References
[1] O.J. Dahl, E.W. Dijkstra and C.A.R.

Hoare, “Structured Programming,” Aca-
demic Press, London, 1972.

[2] R.T. Futrell and D.F. Shafer, L.I. Safer,
“Quality Software Project Manage-
ment,” Prentice Hall PTR, 2002.

[3] T. Gill, “Planning Smarter: Creating
Blueprint-Quality Software Specifica-
tions,” Prentice Hall PTR, 2002.

[4] H.S. Ismail, S.P. Snowden, J. Poolton,
I.R. Reid and I.C. Arokiam, “Agile
manufacturing framework and prac-
tice,”International Journal of Agile Sys-
tems and Management, 2006.

[5] P. Kettunen, “Adopting key lessons from
agile manufacturing to agile software
product development – A comparative
study,”Technovation Journal, 2009.

[6] T. Dyba and T. Dingsoyr, “Empirical
studies of agile software development: A
systematic review,”Information and
Software Technology Journal, 2008.

[7] M. Abrahamsson, J. Warsta, M.T. Sipo-
nen and J. Ronkainen, “New directions
on agile methods: a comparative analy-
sis,” in Proceedings of the 25th Interna-
tional Conference on Software Engineer-
ing, 2003.

[8] ***, CORDIS ICT Programme, “Objec-
tive 1.2: Internet of Services, Software
and Virtualization,”
http://cordis.europa.eu/fp7/ict/ssai/object
ives-1-2_en.html, accessed at
16.09.2009.

[9] M. Papazoglou and K. Pohl (ed.),
“Longer term research challenges in

Informatica Economică vol. 15, no. 2/2011 141

Software & Services,”Expert Group Re-
port for EC, 2008.

[10] K. Whisnant , Z. T. Kalbarczyk and R.
K. Iyer, “A system model for dynami-
cally reconfigurable software,”IBM Sys-
tems Journal, v.42 n.1, p.45-59, January
2003.

[11] Z. Chang, X. Mao and Z. Qi, “Towards a
Formal Model for Reconfigurable Soft-
ware Architectures by Bigraphs; Soft-
ware Architecture,” in the Seventh Work-
ing IEEE/IFIP Conference, Volume 17,
Issue 18-21: 331–334, DOI
10.1109/WICSA. 2008.

[12] S. Kamin and L. Clausen, “Dynamically
reconfigurable software components,”

University of Illinois at Urbana-
Champaign 1304 W. Springfield Urbana,
October 31, 2001.

[13] S. Brad, “Complex System Design
Technique,” Dacia Publ., 2008.

[14] J. Tidd, “From Knowledge Management
to Strategic Competence: Measuring
technological, market and organizational
innovation,” Imperial College Press,
2006.

[15] J., Tidd, J., Bessant and K. Pavitt, “Man-
aging Innovation: Integrating techno-
logical, market and organizational
change,” Wiley, 2005.

[16] D. Minter, “Beginning Spring 2, From
Novice to Professional,” Apress, 2008.

Stelian BRAD is full professor at the Technical University of Cluj-Napoca,
Romania, leading the research group on Competitive Engineering in Design
and Development. He is also the Director of the Department of Research,
Development and Innovation Management of the same university. His re-
search interests include competitive engineering, engineering and manage-
ment of innovation, intelligent industrial robotics.

Adrian CHIOREANU is a senior researcher at the Technical University of
Cluj-Napoca, as a member of the research group on Competitive Engineering
in Design and Development. His key professional fields of interest are: in-
formation technology and systems in business, multimedia, image process-
ing. Adrian got his PhD in telecommunication in 2009. Currently he’s part of
a Post-PhD program and he's learning to get his ACCA qualification.

Mircea FULEA is PhD student and researcher at the Technical University of
Cluj-Napoca, Romania, member of the research group on Competitive Engi-
neering in Design and Development. His professional key interests are prod-
uct management, software design and development, graphic design and mul-
timedia applications.

Bogdan MOCAN is assistant professor at the Technical University of Cluj-
Napoca, Romania, member of the research group on Competitive Engineer-
ing in Design and Development. His key professional fields of interests are
process and product innovation, robotics, integrated management systems
and quality management.

Emilia BRAD is lecturer at the Technical University of Cluj-Napoca, Roma-
nia, member of the research group on Competitive Engineering in Design and
Development. Her research fields include production planning and flexible
manufacturing systems.

	A. Project context
	B. Project description
	C. Reconfigurability issues for the TECH IT EASY tool

